New evidence confirms that Earth was already unstable before the asteroid impact that wiped out the dinosaurs
Researchers at Northwestern University have led a new study that measures the calcium isotope composition of Antarctic fossilized clam and snail shells, which date back to the Cretaceous-Paleogene mass extinction event. The researchers found that the shells’ chemistry shifted in response to a surge of carbon in the oceans.
This carbon influx was likely due to long-term eruptions from the Deccan Traps, a 200,000-square-mile volcanic province located in modern India. During the years leading up to the asteroid impact, the Deccan Traps spewed massive amounts of carbon dioxide (CO2) into the atmosphere. The concentration of CO2 acidified the oceans, directly affecting the organisms living there.
“Our data suggest that the environment was changing before the asteroid impact,” said Benjamin Linzmeier, the study’s first author. “Those changes appear to correlate with the eruption of the Deccan Traps.”
Previous studies have explored the potential effects of the Deccan Traps eruptions on the mass extinction event, but many have examined bulk sediments and used different chemical tracers. By focusing on a specific organism, the researchers gained a more precise, higher-resolution record of the ocean’s chemistry.
For this study, the researchers examined shells collected from the Lopez de Bertodano Formation, a well-preserved, fossil-rich area on the west side of Seymour Island in Antarctica. They analyzed the shells’ calcium isotope compositions using a state-of-the-art technique developed in Jacobson’s laboratory at Northwestern. The method involves dissolving shell samples to separate calcium from various other elements, followed by analysis with a mass spectrometer.